
RAPID COMMUNICATIONS

PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Two-dimensional self-avoiding walks on a cylinder
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~Received 12 November 1998!

We present simulations of self-avoiding random walks~SAWs! on two-dimensional lattices with the topol-
ogy of an infinitely long cylinder, in the limit where the cylinder circumferenceL is much smaller than the
Flory radius. We study in particular theL dependence of the sizeh parallel to the cylinder axis, the connec-
tivity constantm, the variance of the winding number around the cylinder, and the density of parallel contacts.
While m(L) and ^W2(L,h)& scale as expected@in particular,^W2(L,h)&;h/L], the number of parallel con-
tacts decays ash/L1.92, in striking contrast to recent predictions. These findings strongly speak against recent
speculations that the critical exponentg of SAWs might be nonuniversal. Finally, we find that the amplitude
for ^W2& does not agree with naive expectations from conformal invariance.@S1063-651X~99!51201-4#

PACS number~s!: 05.40.2a, 05.70.Jk, 61.25.Hq
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Although self-avoiding random walks~SAWs! are among
the best studied critical phenomena, there have been re
speculations that, if true, would have very far reaching a
surprising consequences@1#. One such consequence wou
be that the critical exponentg of interacting SAWs on the
square lattice would be temperature dependent if the inte
tion between neighboring bonds~i.e., steps of the walk on
opposite edges of a plaquette! depends on the relative orien
tation of the steps. Another consequence would be thatg for
a-thermal SAWs on the Manhattan lattice is different fromg
on other two-dimensional~2D! lattices @2#. Numerical evi-
dence in favor of the former prediction is lacking@3–9#, but
it has been argued@2# that this is not conclusive since muc
longer SAWs (109 steps! would be needed to refute the pr
diction unambiguously. With reference to the Manhattan
tice, the numerical evidence is unclear, since nonuniversa
was found in@2#, but universality was found in@10#.

The main question at stake here is the density of para
contacts~i.e., the number of pairs of parallel steps on opp
site edges of one plaquette! in a very long SAW. It is easily
seen that parallel contacts are forbidden for 2D self-avoid
closed loops. Therefore, it seems plausible that parallel c
tacts result only from spirals formed by the ends of t
walks. This was indeed strongly suggested by simulation
@6#, where it was shown that the probability for a contact
be parallel decreases as a power of the distance from
nearest chain end. But again the significance of this re
was doubted in@2#, where it was claimed thatmuch larger
systems were needed for measurements to be significa
planar topology.

As pointed out in@2#, the natural geometry to study th
problem is obtained by mapping the plane onto the surfac
a cylinder by the conformal map

z5x1 iy→w5~L/2p!ln z. ~1!

Except near the ends of the walk, parallel contacts can o
occur when the walk wraps around the cylinder. In the lim
of very long chains (Nn@L, whereN is the number of steps!
a typical SAW has to grow either parallel or antiparallel
the cylinder axis. Finite size scaling predicts that its longi
PRE 591063-651X/99/59~1!/16~4!/$15.00
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dinal sizeh ~defined here as the average end-to-end dista
projected onto the direction parallel to the cylinder ax!
scales as

h;N/L1/n21, n53/4. ~2!

The scaling of the winding number variance follows from t
facts that it must be linear inh, and that it is dimensionless

^W2&'Ah/L, ~3!

whereA should be a universal amplitude. In the followin
winding numbers will be measured in terms of wrappin
around the cylinder, withW51 corresponding to one ful
turn. Finally, the connectivity constant~the critical monomer
fugacity! should show the usual finite size behavior

m~L !5m`2bL21/n. ~4!

Here, the amplitudeb is not universal. A universal amplitud
can be obtained for the free energyF52 ln Z'N ln m, where
Z is the partition sum. Using Eq.~2! we obtain

F~L,N!5F`~N!2Bh/L, ~5!

up to terms logarithmic inN.
As discussed in@2#, the predictions of@1# can be under-

stood intuitively from the assumption that the density of p
allel contacts follows essentially the winding number: If t
walk wraps once around the cylinder, there should beO(1)
parallel contacts. Thus the prediction for the average num
of parallel contacts is

ni'Ch/L, ~6!

with C as yet another universal amplitude.
Finally, we can rewrite Eq.~2! in terms of the Flory ra-

dius R of SAWs in planar geometry. More precisely, w
defineR as the rms end-to-end distance of a free SAW ofN
steps,R;Nn. Then we obtain
R16 ©1999 The American Physical Society
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h

L
5DS R

L D 1/n

, ~7!

with D also universal. Using this, we can eliminateh/L from
Eqs. ~3!, ~5!, and ~6! to obtain (̂ W2&,F`(N)2F(L,N),ni)
5(A8,B8,C8)(R/L)1/n, with universal amplitudes A8
5AD, B85BD, andC85CD.

The main objective of the present paper was to test E
~2!–~7! by means of Monte Carlo simulations. Since w
want to simulate lattices with large perimetersL, and with
Nn@L ~we went up toL5128 andN560 000), we need a
fast algorithm. For SAWs in planar geometry, the fast
known algorithm is the pivot algorithm~at least if one is not
interested inm!. But it is easy to see that the pivot algorith
doesn’t work well on the cylinder~for sufficiently smallL
one can prove that it isn’t even ergodic!. We therefore used
the pruned-enriched Rosenbluth method~PERM! @11# with
Markovian anticipation@12,13#. In PERM one starts off by
growing chains according to the well-known Rosenblu
method@14#, but when their weights become too large a
too small, respectively, one interferes by cloning and th
pruning, respectively. Weights have to be used, since Ro
bluth sampling is biased, and the weights are needed to c
pensate the bias.

In k-step Markovian anticipation one uses an additio
bias based on the statistics of sequences ofk11 successive
steps. Let us number the 2d directions on ad-dimensional
~hyper-!cubic lattice ass50, . . . 2d21. A sequence ofk
11 steps is then encoded asS5(s2k , . . .s0)[(s,s0). By
PN,m(S) we denote the statistical weight of allN-step chains
in an unbiased sample that had followed the sequenceS dur-
ing stepsN2m2k, . . . ,N2m. This can be estimated eithe
in a previous test run or during the present run. The id
bias ink-step Markovian anticipation is

p~s0us!5PN,m~s,s0!Y (
s0850

2d21

PN,m~s,s08!, ~8!

with N@m@1 @we usedm5150, and averagedPN,m(S)
over all N.300]. Thus a steps0 is made more often if this
step is anticipated to be more successful in the far (m steps
ahead! future, based on previous experience. Equation~8!
should not be used, of course, for the very first steps of
chain. There the probabilitiesPN,m(S) are not appropriate
Our remedy isad hocbut efficient: When determining th
bias for thenth step in a chain, we replacedPN,m(S) by
PN,m(S)1const/n, with const'20. The Markovian anticipa-
tion bias is of course compensated by a weight fac
}1/p(s0us) to guarantee correct sampling.

In our actual simulations we used semi-infinite cylinde
Knowing that the walks have to grow either parallel or an
parallel to the cylinder axis any way, we started them
height51 and put an absorbing barrier at height50, so that
they had to grow into the positiveh direction. The ratios on
the right hand side of Eq.~8! depend then on the absolu
orientation of the steps and onL. Obviously the longitudinal
bias is larger for smallerL. Most of our simulations were
done for the square lattice. Results forL58 are shown in
Fig. 1. There, sequences of nine steps are encoded by
gers from 0 to 4921, with the last step giving the mos
s.
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significant digits. The upward direction iss51, downward is
s53, and the directions perpendicular to the cylinder axis
0 and 2. We see that there is both a strong anisotropy a
strong dependence on the shape of the last part of the ch
The former means that downward steps are likely to be
efficient, while the latter corresponds to the fact that
strongly curling walk will have problems to be continue
For largeL we used isotropic Markovian anticipation wit
k511. It gave roughly a one order of magnitude improv
ment in speed over plain PERM. For smallL, anisotropic
anticipation withk58 gave up to one additional order o
magnitude further improvement.

We also performed less extensive simulations on the
angular lattice in order to test for universality. There we ha
six local directions instead of four, so that we could not u
memories with the same length. We used only isotropic
ticipation there, withk57.

In all simulations chain lengths were such thath/L.80.
Results for the connectivity constant are shown in Fig

FIG. 1. Histogram ratiop(s0us) used for biasing square lattic
SAWs on cylinders withL58, based on sequences of length
Each sequenceS is encoded by a number between 0 and 4921
5262 143. The probability with which the next step is taken
p(s0us), up to corrections for the very first steps. On all poin
statistical errors are,0.01. The four heavy dots correspond to fo
sequences:S5s, s148, s12348, and s13348. The chain seg-
ments corresponding to these sequences are also indicated
probabilities to continue right (r ), up (u), left (l ), and down (d),
after the segment ururdruu, are p(r ):p(u):p( l ):p(d)
50.28:0.52:0.20:0.

FIG. 2. Log-log plot ofm`2m(L) againstL. The straight lines
have a slope of24/3, as predicted by Eq.~4!, and prefactors ad-
justed to fit the data. Error bars on the data points are comparab
or smaller than the symbol sizes.
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where we plottedm`2m(L), with m`52.638 159@15# and
m`54.150 795, respectively@17# for the square and triangu
lar lattice, respectively. We see perfect agreement with
theoretical prediction indicated by the slope of the strai
lines. Equation~2! was tested by first making linear fits i
plots of h versusN for fixed L ~to avoid biases from the
chain ends!, and then plotting the slopes againstL on a log-
log plot. The result is shown in Fig. 3; again, we see perf
agreement with the theoretical prediction. Combining the
sults from Figs. 2 and 3, we find that the amplitudeB
50.67560.002 is indeed universal~the error is just a rough
but conservative estimate, as are the following error e
mates!.

Winding number variances, multiplied byL and divided
by h, are shown in Fig. 4. ForL<16 we see finite size
corrections. Apart from these, all curves coincide within t
expected statistical fluctuations, as is expected from Eq.~3!.
Again we see that universality is satisfied, i.e., the constanA
is the same for the square and triangular lattices, within
statistical errors. More precisely, we findA50.47560.004.

In order to estimate the universal amplitudeD, we use the
following estimates for the end-to-end distances of f
chains: limN→`^R2&/N2n50.771060.0004 @16# for the
square lattice, and 0.711@17# for the triangular lattice. Again
both gave consistent results:D50.944660.0006.

Finally, we consider the number of parallel contacts~mea-

FIG. 3. Log-log plot ofh0 againstL, with h0 being the constan
in a fit h5h0N1h1 for fixed L. Again, error bars on the data poin
are comparable to or smaller than the symbol sizes. The stra
lines have a slope of21/3 as predicted by Eq.~2!, with prefactors
adjusted to fit the data.

FIG. 4. Plot ofL^W2&/h againsth/L. The horizontal line is our
best estimate for the constantA. Statistical errors are typically o
the size of the visible fluctuations.
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sured only on the square lattice!. A plot analogous to Fig. 4
shows a strongL dependence, but would not allow us
estimate this dependence precisely. More instructive is a
analogous to Fig. 3. For eachL, we first extracted the coef
ficient a0 in a fit ni5a0N1a1 . In Fig. 5 we then plota0
againstL on double-logarithmic scale. From this figure w
see thatni;NL22.25 or

ni /h;L21.9260.03. ~9!

Again, the error estimate is just an educated guess. Ind
our data show a slight downward curvature, suggesting
the true exponent might be closer to22.0. In any case, Eq
~6! is clearly ruled out.

Qualitatively this is indeed not surprising. It means th
even if the walk winds once around the cylinder, the chan
that it touches itself is much less than one and decreases
L. This agrees qualitatively with the behavior of a SA
confined to a strip of widthL between two repelling walls. In
that case the density of monomers at a distancez from a wall
increases asz1/n @18#, implying that the average distance b
tween two contacts with the wall is;L2. In the present case
the previously placed part of the SAW acts like a wall, a
during one wrapping around the cylinder the SAW fills
layer of typical widthL in the longitudinal direction. We
thus expect in the present case that the number of par
contacts per wrapping is;1/L. This argument is of course
not rigorous, but it agrees within three standard deviatio
with our numerical result.

Finally, let us discuss the universal constantA. Naively,
one could try to estimate it as follows. In planar geometry
is known that the variance of the winding number arou
either end point is@19,8#

^W2&5~2p2!21 ln N, N→` ~plane! ~10!

~notice that we measure windings in units of 2p!. When the
plane ~punctuated at one of the end points of the chain! is
mapped onto the cylinder by means of Eq.~1!, winding
around this end point is mapped precisely onto wrapp
around the cylinder. Taking into account that lnN5const
1n21 lnuzu→const12ph/nL, we would predict̂ W2&5const
1(1/pn)h/L, i.e., A51/pn50.4244. This disagrees with
our measured value by more than ten standard deviati
and seems definitely ruled out. To explain this discrepan

ht

FIG. 5. Log-log plot ofa0 againstL, whereni5a0N1a1 for
fixed L. According to the prediction of Refs.@1,2#, one should have
a1;1/L1.333. The straight line is const/L2.25.



a
l
e

y

ng
in
fa
d

ich
le,
t-
ve
in

on-
ce

se-
ons

RAPID COMMUNICATIONS

PRE 59 R19TWO-DIMENSIONAL SELF-AVOIDING WALKS ON A CYLINDER
we notice that conformal invariance holds only for the c
nonical ~fixed fugacity x) ensemble exactly at the critica
point @in this ensembleN fluctuates of course, so that w
should actually write ^W2/ln N&→(2p2)21 for x→xc
[1/m` , instead of Eq.~10!#. For any finiteL, our results for
the cylinder hold, in contrast, forxc(L)51/m(L).xc , since
only there,̂ N&→`. Therefore, conformal invariance strictl
spoken does not give a prediction forA.

In summary, we have shown by simulations of very lo
chains on cylinders that universality holds for 2D SAWs,
contrast to recent claims. Our conclusion is based on the
that parallel contacts are much more rare than predicte
n,

n

hy

e

-

ct
in

@1#. This suggests that the corresponding operator, wh
was predicted to be marginal, could play an irrelevant ro
so that universality should hold for 2D SAWs. While coun
ing parallel contacts with sufficient statistics would ha
been virtually impossible in planar geometry, it is feasible
cylinder geometry. At the same time our results on the c
stantA should serve as a warning that conformal invarian
should not be applied too naively.

We thank Gerard Barkema and John Cardy for very u
ful discussions, and Erich Eisenriegler for useful discussi
and for carefully reading the manuscript.
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