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Two-dimensional self-avoiding walks on a cylinder
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We present simulations of self-avoiding random walB&Ws) on two-dimensional lattices with the topol-
ogy of an infinitely long cylinder, in the limit where the cylinder circumferehcés much smaller than the
Flory radius. We study in particular tHe dependence of the sizeparallel to the cylinder axis, the connec-
tivity constantu, the variance of the winding number around the cylinder, and the density of parallel contacts.
While u(L) and{W?(L,h)) scale as expectdih particular,({W?(L,h))~h/L], the number of parallel con-
tacts decays als/L12 in striking contrast to recent predictions. These findings strongly speak against recent
speculations that the critical exponeppf SAWs might be nonuniversal. Finally, we find that the amplitude
for (W?) does not agree with naive expectations from conformal invarigdis¥063-651X99)51201-4

PACS numbg(s): 05.40-a, 05.70.Jk, 61.25.Hq

Although self-avoiding random walKSAWS) are among dinal sizeh (defined here as the average end-to-end distance,
the best studied critical phenomena, there have been recemtojected onto the direction parallel to the cylinder axis
speculations that, if true, would have very far reaching andcales as
surprising consequencé¢&]. One such consequence would
be that the critical exponent of interacting SAWs on the h~N/LY=1,  y=3/4. 2)
square lattice would be temperature dependent if the interac-
tion between neighboring bondse., steps of the walk on
opposite edges of a plaquetiepends on the relative orien-
tation of the steps. Another consequence would beytat
a-thermal SAWSs on the Manhattan lattice is different frgm
on other two-dimensional2D) lattices[2]. Numerical evi-
dence in favor of the former prediction is lackifig—9], but
it has been arguel®] that this is not conclusive since much whereA should be a universal amplitude. In the following,
longer SAWs (18 steps would be needed to refute the pre- Winding numbers will be measured in terms of wrappings
diction unambiguously. With reference to the Manhattan lataround the cylinder, withV=1 corresponding to one full
tice, the numerical evidence is unclear, since nonuniversalitfrn. Finally, the connectivity constafthe critical monomer

The scaling of the winding number variance follows from the
facts that it must be linear ih, and that it is dimensionless,

(W2)~Ah/L, 3

was found in[2], but universality was found ifiL0]. fugacity) should show the usual finite size behavior
The main question at stake here is the density of parallel
contacts(i.e., the number of pairs of parallel steps on oppo- w(l)=pu,.—bL™ . 4

site edges of one plaquette a very long SAW. It is easily

seen that parallel contacts are forbidden for 2D self-avoiding{ere, the amplitude is not universal. A universal amplitude
closed loops. Therefore, it seems plausible that parallel consan pe obtained for the free enery- —In Z~NIn u, where
tacts result only from spirals formed by the ends of thez js the partition sum. Using EG2) we obtain

walks. This was indeed strongly suggested by simulations in

[6], where it was shown that the probability for a contact to F(L,N)=F.(N)—Bh/L, (5)
be parallel decreases as a power of the distance from the

nearest chain end. But again the significance of this resulfip to terms logarithmic inN.

was doubted if2], where it was claimed thanuchlarger As discussed 2], the predictions of1] can be under-
systems were needed for measurements to be significant §lood intuitively from the assumption that the density of par-
planar topology. allel contacts follows essentially the winding number: If the

As pointed out in[2], the natural geometry to study this walk wraps once around the cylinder, there shouldtgé)

problem is obtained by mapping the plane onto the surface gfarallel contacts. Thus the prediction for the average number
a cylinder by the conformal map of parallel contacts is

z=x+iy—w=(L/27)Inz. 1 n,~ChiL, (6)

Except near the ends of the walk, parallel contacts can onlwith C as yet another universal amplitude.

occur when the walk wraps around the cylinder. In the limit  Finally, we can rewrite Eq(2) in terms of the Flory ra-
of very long chainsI”>L, whereN is the number of steps dius R of SAWs in planar geometry. More precisely, we
a typical SAW has to grow either parallel or antiparallel to defineR as the rms end-to-end distance of a free SAVWNof
the cylinder axis. Finite size scaling predicts that its longitu-steps,R~N”. Then we obtain
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with D also universal. Using this, we can elimindtd from o
Egs.(3), (5), and(6) to obtain {W?),F..(N)—F(L,N),n,) o 08P
=(A’,B’,C")(R/L)*", with universal amplitudes A’ 06 [

=AD, B'=BD, andC'=CD. 04 L
The main objective of the present paper was to test Egs.
(2—(7) by means of Monte Carlo simulations. Since we :
want to simulate lattices with large perimetdrs and with 0 0
N”>L (we went up toL=128 andN=60000), we need a
fast algorithm. For SAWSs in planar geometry, the fastest
known algorithm is the pivot algorithrfat least if one is not FIG. 1. Histogram ratiqp(sp|s) used for biasing square lattice
interested inu). But it is easy to see that the pivot algorithm SAWS on cylinders withL. =8, based on sequences of length 9.
doesn’'t work well on the cylindeffor sufficiently smallL ~ Each sequencé is encoded by a number between O_angdréL _
one can prove that it isn’t even ergoglitVe therefore used =262143. The proba_lblllty with which t_he next step is take_n is
the pruned-enriched Rosenbluth metH&ERM) [11] with p(sq|s), up to corrections for the very first steps. On all points,
Markovian anticipatior{12,13. In PERM one starts off by statistical errors are:g.Ol. Thesfour heavy dogs correspor}d to four
growing chains according to the well-known Rosenbluthsequencess:s‘ st4 ,s+2h><4, and s+3x4% Thle Cha'r.‘ Seg- h
method[14], but when their weights become too large andments corresponding to these sequences are also indicated. The
too small, respectively, one interferes by cloning and therfl;;t:abltlﬁfs t:ecg?]:gzg i::Jg::;rr%’UUp (Zzé Ief;((rl)) p?z;j sa\;w;(dg)
pruning, respectively. Weights have to be used, since Rosen-( »5.0 52:0 20:0. ' ' R
bluth sampling is biased, and the weights are needed to com-
pensate the bias.

In k-step Markovian anticipation one uses an additiona
bias based on the statistics of sequencek-ol successive
steps. Let us number thedZdirections on ad-dimensional
(hyperjcubic lattice ass=0,...2d—1. A sequence ok
+1 steps is then encoded &s-(s_y, .. .Sg)=(SSp). By
Pn.m(S) we denote the statistical weight of dlstep chains
in an unbiased sample that had followed the sequ&ner-

gsignificant digits. The upward directionss= 1, downward is
s=3, and the directions perpendicular to the cylinder axis are
0 and 2. We see that there is both a strong anisotropy and a
strong dependence on the shape of the last part of the chain.
The former means that downward steps are likely to be less
efficient, while the latter corresponds to the fact that a
strongly curling walk will have problems to be continued.

ing stepsN—m—k, . .. N—m. This can be estimated either For largeL we used isotropic Markovian anticipation with

in a previous test run or during the present run. The idea :11'. It gave roughly a oneé order of magnnude 'mprove-
bias ink-step Markovian anticipation is ment in speed over plain PERM. For small anisotropic

anticipation withk=8 gave up to one additional order of

2d-1 magnitude further improvement.
P(So|S) =Py m(S.So) > Py m(S,50), (8) We also performed less extensive simulations on the tri-
' /=0 ’ angular lattice in order to test for universality. There we have

six local directions instead of four, so that we could not use
with N>m>1 [we usedm=150, and average®y (S memories with the same length. We used only isotropic an-
over allN>300]. Thus a steg, is made more often if this ticipation there, withk=7.
step is anticipated to be more successful in the farsteps In all simulations chain lengths were such théL > 80.
ahead future, based on previous experience. Equati®n Results for the connectivity constant are shown in Fig. 2
should not be used, of course, for the very first steps of the
chain. There the probabilitieBy (S) are not appropriate. 1
Our remedy isad hocbut efficient: When determining the
bias for thenth step in a chain, we replaceel (S) by
Pn,m(S) + consth, with const=20. The Markovian anticipa-

square lattice @
triang. lattice 4

0l F

tion bias is of course compensated by a weight factor 5
o« 1/p(Sg|S) to guarantee correct sampling. 2
In our actual simulations we used semi-infinite cylinders. 4

Knowing that the walks have to grow either parallel or anti- o.o1
parallel to the cylinder axis any way, we started them at
height=1 and put an absorbing barrier at heiglft, so that
they had to grow into the positivie direction. The ratios on 0.001 - '
the right hand side of Eq:8) depend then on the absolute 1 10 100
orientation of the steps and &n Obviously the longitudinal
bias is larger for smalleL.. Most of our simulations were FIG. 2. Log-log plot ofu..— u(L) against_. The straight lines
done for the square lattice. Results fo=8 are shown in  have a slope of-4/3, as predicted by Eq4), and prefactors ad-
Fig. 1. There, sequences of nine steps are encoded by intgisted to fit the data. Error bars on the data points are comparable to
gers from 0 to 4—1, with the last step giving the most or smaller than the symbol sizes.
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FIG. 3. Log-log plot ofhy against_, with hy being the constant FIG. 5. Log-log plot ofay againstL, wheren,=agN+a; for
in a fith=hgN+h, for fixed L. Again, error bars on the data points fixedL. According to the prediction of Reffl,2], one should have
are comparable to or smaller than the symbol sizes. The straighat;~1/L133 The straight line is condtf-?.
lines have a slope of 1/3 as predicted by Ed?2), with prefactors
adjusted to fit the data. sured only on the square lattjcé plot analogous to Fig. 4
shows a strond. dependence, but would not allow us to
where we plottedu..— (L), with u..=2.638159[15] and  estimate this dependence precisely. More instructive is a plot
me.=4.150 795, respectivelyl7] for the square and triangu- analogous to Fig. 3. For eath we first extracted the coef-
lar lattice, respectively. We see perfect agreement with théicient ay in a fit nj=agN+a;. In Fig. 5 we then plot,
theoretical prediction indicated by the slope of the straightagainstL on double-logarithmic scale. From this figure we
lines. Equation(2) was tested by first making linear fits in see than,~NL %% or
plots of h versusN for fixed L (to avoid biases from the
chain endg and then plotting the slopes agaihsbn a log- ny/h~L ~192:003 9
log plot. The result is shown in Fig. 3; again, we see perfect
agreement with the theoretical prediction. Combining the reAgain, the error estimate is just an educated guess. Indeed,
sults from Figs. 2 and 3, we find that the amplituBe our data show a slight downward curvature, suggesting that
=0.675+0.002 is indeed universéihe error is just a rough the true exponent might be closer +62.0. In any case, Eq.
but conservative estimate, as are the following error esti{6) is clearly ruled out.
mates. Qualitatively this is indeed not surprising. It means that
Winding number variances, multiplied Hy and divided even if the walk winds once around the cylinder, the chance
by h, are shown in Fig. 4. FoL<16 we see finite size that it touches itself is much less than one and decreases with
corrections. Apart from these, all curves coincide within theL. This agrees qualitatively with the behavior of a SAW
expected statistical fluctuations, as is expected from(®g. confined to a strip of widtlh between two repelling walls. In
Again we see that universality is satisfied, i.e., the congtant that case the density of monomers at a distanitem a wall
is the same for the square and triangular lattices, within théncreases as'” [18], implying that the average distance be-
statistical errors. More precisely, we fid=0.475-0.004.  tween two contacts with the wall isL2. In the present case
In order to estimate the universal amplitudewe use the the previously placed part of the SAW acts like a wall, and
following estimates for the end-to-end distances of freeduring one wrapping around the cylinder the SAW fills a
chains: limy_..(R?)/N?’=0.7710-0.0004 [16] for the layer of typical widthL in the longitudinal direction. We
square lattice, and 0.7117] for the triangular lattice. Again, thus expect in the present case that the number of parallel
both gave consistent resulf®:=0.9446+ 0.0006. contacts per wrapping is-1/L. This argument is of course
Finally, we consider the number of parallel contgatea-  not rigorous, but it agrees within three standard deviations
with our numerical result.
0.49 T T T T Finally, let us discuss the universal constantNaively,
one could try to estimate it as follows. In planar geometry, it
is known that the variance of the winding number around
either end point i$19,8]

0.48
0.47 W2
046 [t

0.45 | (W3=(27%)"*InN, N—= (plang (10

L<wh / <h>

0.44 (notice that we measure windings in units af)2When the

L=128

0.43 triang. lattice, L =8 plane (punctuated at one of the end points of the chasn
0.42 li:;gi mapped onto the cylinder by means of HG), winding

0.41 ; : L=-64 — around this end point is mapped precisely onto wrapping
0 20 40 60 80 100 around the cylinder. Taking into account thatNsconst
<>/ L +v In|Z—const+27h/1L, we would predict{\W?2) = const
FIG. 4. Plot ofL(W?)/h againsth/L. The horizontal line is our ~+(1/mv)h/L, i.e., A=1/mv=0.4244. This disagrees with
best estimate for the constafit Statistical errors are typically of our measured value by more than ten standard deviations,
the size of the visible fluctuations. and seems definitely ruled out. To explain this discrepancy,
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we notice that conformal invariance holds only for the ca-[1]. This suggests that the corresponding operator, which
nonical (fixed fugacity x) ensemble exactly at the critical was predicted to be marginal, could play an irrelevant role,
point [in this ensembleN fluctuates of course, so that we so that universality should hold for 2D SAWSs. While count-
should actually write (W?/InN)—(27%)~1 for x—x. ing parallel contacts with sufficient statistics would have
=1/u.,, instead of Eq(10)]. For any finiteL, our results for  been virtually impossible in planar geometry, it is feasible in
the cylinder hold, in contrast, for,(L)=1/u(L)>X., since  cylinder geometry. At the same time our results on the con-
only there(N)— . Therefore, conformal invariance strictly stantA should serve as a warning that conformal invariance
spoken does not give a prediction far should not be applied too naively.

In summary, we have shown by simulations of very long
chains on cylinders that universality holds for 2D SAWSs, in  We thank Gerard Barkema and John Cardy for very use-
contrast to recent claims. Our conclusion is based on the fadul discussions, and Erich Eisenriegler for useful discussions
that parallel contacts are much more rare than predicted iand for carefully reading the manuscript.
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